Gravitational wave

Gravitational waves are waves of the intensity of gravity that are generated by the accelerated masses of binary stars and other motions of gravitating masses, and propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves. Gravitational waves are sometimes called gravity waves, but gravity waves typically refer to displacement waves in fluids. In 1916 Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as ripples in spacetime. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed) – showing one of the ways the methods of Newtonian physics are unable to explain phenomena associated with relativity. The first indirect evidence for the existence of gravitational waves came in 1974 from the observed orbital decay of the Hulse–Taylor binary pulsar, which matched the decay predicted by general relativity as energy is lost to gravitational radiation. In 1993, Russell A. Hulse and Joseph Hooton Taylor Jr. received the Nobel Prize in Physics for this discovery. The first direct observation of gravitational waves was made in 2015, when a signal generated by the merger of two black holes was received by the LIGO gravitational wave detectors in Livingston, Louisiana, and in Hanford, Washington. The 2017 Nobel Prize in Physics was subsequently awarded to Rainer Weiss, Kip Thorne and Barry Barish for their role in the direct detection of gravitational waves. In gravitational-wave astronomy, observations of gravitational waves are used to infer data about the sources of gravitational waves. Sources that can be studied this way include binary star systems composed of white dwarfs, neutron stars, and black holes; events such as supernovae; and the formation of the early universe shortly after the Big Bang.


Developed by StudentB